
Work

The Date

Class
' cUco1

I
t was late one Friday afternoon, the

coffee pot was empty, and the sun

was over the yardarm, so we had

opcned the first beer of the evening.
We were standing in front of the

blackboard arguing over a date class,

when our colleague, Henry, came in

and said that if taking our date class

would improve his social life, he was

certainly interested.

It�s a little more complicated than

that. We have been taking Carol

Meier�s introductory C++ course at

the university. After years of doing

object-oriented things, we thought it

would be useful to have some formal

background in C++.

In her first class, Carol gave a

�by-the-way� exercise: Write a C++

class to handle dates. Because this is

one of our favorite kind of problems,
we spent much of the next month

debating the appropriate data struc

tures and interfaces to accomplish
this. As a result, although we�ve

written code in Pen for the last 14 or

so columns, we�re going to change
direction and write the code for this

month�s column in C++.

Tricks of the Trade

There are three tricks that we use

when we talk about object-oriented
programming:

Data hiding�Careful program

mers have been using this trick for

years, by writing dedicated routines

to access data structures. C++ has

language features to enforce this.

Our nile of thumb has been to define

the class method interface carefully

enough so that if the underlying data

structure changed entirely, the inter

face would remain constant.

Jeffrey Copeland (copelarid@alurnni .

cal tech. edu) is a member of the technical staff at

QMS�s languages group, in Boulder, CO. His recent adventures include internationalizing a large sales

and manufacturing system and providing software services to the administrators of the 1993 and 1994

Hugo awards. His rcscarch intc:ests include internationalization, typesetting, cats and children.

Jeffrey S. Hae,ner (j shcanary .
corn) is an independent consultant based in Boulder, CO. He

woi Its, writes and speaks on tile interrelated topics of open systems, standards, software portability
and porting and internal ionali zal ion. Or. Haemer has been a fcatti red speaker at 1/sen ix, UniForum

and Expo Kuwatt.

32 RS/Msgazine SEPTEMBER 1996

Work

� Polymorphism�We support the overloading of func- there is a common Gregorian calendar that we use in civil

tions so that, for example, with appropriate definitions, the discourse in the Western world, it�s not the only one of

plus operator can also handle concatenation of strings. This interest. If we want to know when Passover occurs, we

beats having the old FORTRAN standby of a different ver- need to refer to the Hebrew calendar. Similarly, the

sion of each function for each data type. For example, sep- Moslem holy month of Ramadan doesn�t appear on Gre

arate square root functions for floats, doubles and integers. gorian calendars. It is also useful to be able to do calcula

� Inheritance�Data stnictures can be defined to be tions in the older Julian calendar for historical purposes.

derived from already existing data structures. The classic We can begin our task by defining a base Date class:

example is a data structure to handle mammals: It absorbs

the data and methods of a simpler data structure to handle class Date

general animals. public:

We�ll use all three tricks in this month�s column. void SetDate (long d) C dat:e d;

friend long operator-(const Date& a,

Some Calendar Problems const Date& b)

Our history with calendar problems goes back several friend Date operator÷ (const Date& a,

years, as longtime readers are well aware. We�ve used const long& b)

some methodology and algorithms from Nachum Der- void WeekdayOnOrBefore (mt WeekDay

showitz and Edward M. Reingold�s paper �Calendrical date -= (date - WeekDay) % 7;

Calculations,� ill Softwcirc Practice & Experience, Vol. 20,

pp 899-928, September 1990. private:

long date;

�� �

T 5 /jJ
.;:J.:� i,: I.,) .: Weve declared a single data item�the day number�and

� i , ,.,. .. . a handful of useful routines. Normally, we�d have done the
/

I... work of SetDate() in the Date constructor, but we were

�fit

..; : being lazy about constructors in inherited classes. More

important,

vc reclelinc the plus and minus operators to be
..: . � useful in the date context�we can now calculate the differ-

-

:� . .

ence

between two dates, or a date some time after a given
�

date without knowing the underlying data structure.

,�:)r7 ;�: 1�7I / As an aside, we include a useful utility routine to tell us

.. -,,., , .,
the weekday preceding a certain date. For example, this

�� � ,
.

J. .L . allows

us to find the Monday on or before New Year�s Day,

: � ; : that is, the beginning of the first work week of a new year.

The aforementioned operator redefinitions are pretty

When we consider dates, we typically need to calculate straightforward:
things such as the number of days between two dates, or

the date some time before or after a given date. Dershowitz long operator- (const Date& a, const Date& b)

and Reingold make the observation�though they are not

the first�that if we number the days from some arbitrary return a. date - b. date;

starting point and have convenient conversion routines to

and from the day number, we can perform those calcula

tions easily. Date operator+ (const Date& a, const long& b)

Dershowitz and Reingold use Monday,Jan. 1, in the

year 1 A.D. as their starting point. Contrast this with a Date c;

similar set of code we once wrote that used September 14, c.date a.date + b;

1752 as day number one�computationally, a really bad return c;

choice. (Exercise for the reader: Why that date? Hint: Try 1

cal 9 1752.) Alternately, astronomers do their calcula

tions injulian dates, beginning with Jan. 1, 471.3 B.C. on The Gregorian Calendar

the julian calendar�offset 1,721,425 days from Dershow- Historically, it would make sense to declare the inter

itz and Reingold�s starting point, face for the Julian calendar next. But it�s the Gregorian
Our debates centered around a basic problem. While calendar that we use most often, and with which we�re

34 RSlMagazinc SEPTEMBER 1996

W0rk

most familiar, so do that next instead, overhead of constantly converting from tile absolute day
The class header is quite a bit larger than the one for number in Date. We also provide private methods�with

the base Date class: definitions in line�to tell us if it is a leap year and return

the number of days in a given month.

class Gregorian : public Date { Remember the correction that took us from julius
public: Caesar�s calendar to Pope Gregory�s? It�s more accurate

Gregorian () { to make each century year a non-leap year, except when

date = month = day = year = 0; it�s evenly divisible by 400. For example, 1992 and 2000

are leap years, but 1800 wasn�t. We�ll return to this cor

Gregorian(int month, mt day, mt year); rection later.

Gregorian(Date d) ; Let�s start looking at the public methods for class

void SetDate(int month, mt day, mt year); Gregorian. We begin with the pair of overloaded con-

void SetDate (long d) ; structors, which are brief. For example,
mt DayOfWeek() (return date % 7;

II because day 1 is Monday Gregorian: :Gregorian(Date d

void print();

void Easter(int year); SetDate(d.date);

protected:

mt month, day, year;

bool Leapyear(mt year) (Gregorian: :Gregorian(

if) (year%400) == 0) return true; mt month, mt day, mt year

if((year%l00) == 0) return false;

if((year%4) == 0) return true;

return false; SetDate(month, day, year);

} }

mt DayslnMonth(mt month, mt year

mt] 31, 28, 31,30,31,30, Notice that in the first line, we�re being a bit tricky. We�re

31,31,30,31,30,31); taking a Date as an argument, but passing long onto

if) month == 2 && LeapYear (year)) SetDate. More important, that first version of the con-

return 29; structor allows us to have fragments in our code like the

return month-1]; following:

Gregorian today, tomorrow;

tomorrow = today + 1;

Notice that we begin by declaring Gregorian to be a sub

class of Date. In addition, we provide several alternate How can we do this? Our overloading of the + operator

constructor definitions and some public methods that will only applies to the Date class, so we fix this by providing a

be useful�including several alternate overloaded versions constructor to take a Date and convert it to a Gregorian.

of SetDate H, to set the value of a Gregorian date. Of course, we must follow these with the methods for

To go with the DayOfWeek () method�and the Week- SetDate H. Both versions of SetDate take the date in

dayOnOrse fore () method of the base class�it�s useful to one form and generate it in the other�that is, given the

have tile following extra definitions: absolute day number, we calculate month, day and year,

and vice versa. The simpler version is the latter:

const mt Sun = 0;

const mt Mon = Sun+l; void

const mt Tue = Mon+l; Gregorian::SetDate(

const mt Wed = Tue+l; mt month_, mt day_, mt year_

const mt Thu Wed+1;

const mt Fri = Thu+1; month = month_;

const inc Sat = Fri÷l; day = day_;

year = year_;

Our hidden data and methods are also simple. We pro- --year;

vide the obvious data of month, day and year�which we

could skip, if we were willing to pay the computational date = 0;

RS/M�azinc� SEPTEMBER 1996 35

Vtlorh

II now calculate days before this year: II we approximate m/cl/y from below

7/ basic years year = dd / 366;

date += year_
* 365; Gregorian guess(l,l,year);

II leap year days while(guess.date <= dd

date += year_ / 4;

II century non-leap years guess.SetDate(l,l, ++year);

date -= year_ / 100;

II 400 years guess.SetDate(l,l,--year);

date += year_ I 400;

II add the days before this month II now approach the month

for(mt i = 1; i < month_; i-+) month = 1;

date += Dayslnlvlonth(i, year); while(guess.date <= dd

7/ days in this month

date += day_; guess.SetDate(÷+month,l,year);

guess.SetDate(--month, 1,year);

This method stores the given month, day and year,

and calculates the days since our epoch of Jan. 1, 1. It is II now get the difference for day of month

much more complicated to do that calculation in rever- day = (int) dd - guess.date + :1;

Se. Dershowitz and Reingold provide, in a footnote, an

exact calculation to do it, but the resulting code would

be obscure. Notice that we use the month, clay, year form of the

constructor to do the internal calculation to ensure we

ll iii�u @ �Th haven�t gone beyond the correct date.

J9 ThG t(9QL JLwo u1leeoi.e display dates. ideally, we

°° format specifier, such as strf time (). Indeed, a version of

U P ., r�\(I
strf time () for the Date base class would, simply need to

LQJ J, 1llll .i1i i�L] (@Lrd(9(9i)ll be overloaded with new month names to handle all four of

fli' the Gregorian,Julian, Hebrew and Moslem calendars.

By the way, we�re ignoring the issue of overloading for

(i)(9] '1@IO different languages, so we can print July 4, 1776, orjuillei

�/JII L7 ?bV 191 UL)cI7 14,
1 789, depending on the value of our LANG environment

variable. But, we re trying to prove the concept at the

llllJ ' llv c19 h1 moment; our print () code follows. Notice thai. we also

print the absolute day number for clebuggiiig purposes.

Dershowitz and Reingold also provide an algorithm that

makes a guess, and then approaches the calendar date from void

below. We thought that there had to be a better way, so we Gregorian: : print

examined all the versions of the source code for the UNIX

datecommandand localtime() andstrftime() rou- cout << month << �I� << day << �I� << year;

tines we had at hand. It turns out that everyone�Henry cout <<
� C� << date << �) �

<< endi;

Spencer�s date routines, the Free Software Foundation ver

sions of date and strftime (), Dj. Delorie�s port of the

GNU C Compiler and its libraries to DOS�uses the same Exercise for the reader: Write a strftime C C to replace
method as Dershowitz and Reingold. That is, they make a the above code.

guess and then zero in on the correct date after the epoch.
So, we use that algorithm for the second overloaded Finishing with an Example

version of SetDate (C: We�ve now got enough base to write an example or

two to show that our methods are marginally correct.

void Let�s bcgirt by convincing ourselves that the basic con-

Gregorian: : SetDate (long dd C version code works. For example,

date = dd; memo

36 RS/Mag;zwc SEPTEMBER 1996

Work

1/1/1 (1)

Gregorian zero(1,1,1); 1/1/1970 (719163)

zero.print() ; 1/1/1970 (719163)

3/17/2023 (738596)

Next, we do a trick because we know what day number

actually corresponds to a particular date. The two dates By way of further reading, we recently discovered

should be the same that Dershowitz and Reingold followed up their 1990

paper with a survey of some other calendars. See

Gregorian a; Reingold, Dershowitz & Clarnen, �Calen

a. SetDate (719163) ; -...,.. ..

dric Calculations, 11: Three Historical

Gregorian b(1, 1,1970); /
�4�0O .. Calendars,� in Software Practice &

a. print C) ; b
. print () ;

,
II Experience, Vol. 23, pp 383-404,

� �� � . ii April 1993.

Finally, we amuse ourselves by figuring out � 11 Also, there is an interesting calen

when our son,JJ will be half his father�s age . . Li dar calculation in Volume 1 of Donald

This gives us a chance to test the operator �
-

_. ..
- Knuth�s The Art of Conipufer Program-

overloading for + and.-
.

. flung, Addison-Wesley, (2nd edition)

1973, ISBN 0-201-03809-9, see Exer

Gregorian jlc(6, 5,1957); cise 14 of Section 1.3.2. We�ll revisit that

Gregorian jj(4,26,1990); reference next time.

long diff; Next month, we�ll present our version of

diff = jj - jlc; strftimeu.Thenwe�llfinishofftheGregorian

jj jj + diff; class with the Easter function, which will allow us to

jj .print() ; calculate the date of Mardi Gras. Also, we�ll add the class

for Julian dates as one derived from Gregorian. Space

permitting, we�ll look at a lunar calendar for contrast.

This provides us with the output we expected: Until then, happy dating. A

Reader Feedback

T
o help RS/Magazine serve you better,

.

please take a few minutes to close the

feedback loop by circling the appropriate
numbers on the Reader Service Card located

elsewhere in this magazine. Rate the following
column and feature topics in this issue.

INTEREST LEVEL

Features: High Medium Low

AIX Shines in the Front Office 170 171 172

SNA Takes the Express Way 173 174 175

CenterLine�s QualityCenter Earns Mixed Marks....176 177 178

Columns:

Q&AIX�Trade REXX for a Python 179 180 181

Systems Wrangler�Wonders of the WWW 182 183 184

Datagrams�The TLD Fiasco 185 186 187

AlXtensions�Web-Based Collaboration 188 189 190

Work�The Date Class 191 192 193

RSlMcigazine SEPTEMBER 1996 37

	The Date Class.pdf

