
Work
by Jeffreys Copeland and Haemer

40 SunExpert Magazine ■ January 1999

Reader, Part 2
LL

ast month, we began building a
reader for text files in C++. Our
intention this month is to provide

software that will allow you to metaphor-
ically make annotations, mark pages you
wish to double-check or bookmark
where you stop reading.

As we’ve occasionally done in the
past, this column is written using the
CWEBliterate programming tool, which
melds program documentation and code
into the same file for printing. You can
pick up further information on CWEB

from our Web page.
The module we’ll be building this

time needs some overall structure.

<header files>

<bookmark class definition>

<prototypes>

<global data>

<auxilary routines>;

We’re also going to need some header
files. Many of the header files will be

familiar because they were used in last
month’s column.

<header files>=

#define _ALL_SOURCE

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#ifdef __MSDOS__

#include <io.h>

#include <dos.h>

#define strcasecmp stricmp

#else

#include <unistd.h>

#include <strings.h>

#endif

#include <sys/stat.h>

Last time, we built the source code
and methods for the Bookmark class,
which stores the location where we
stopped reading our list of files. So
let’s backtrack a little and include the
header with our class prototypes.

The class internals are simple at

the top level:

<bookmark class definition>=

class Bookmark {

public:

<bookmark interfaces>

private:

<bookmark data>

};

For the data, we need to include the
following. (If we had structured our
classes differently, we might have in-
cluded a FileList class containing only
the list of files, and a BookMark class
containing a single bookmark. We
could then instantiate a “BookMark”
for the main bookmark and one for
each supplementary bookmark we
used. Instead, we’ve decided to include
all the data in a single class.)

<bookmark data>=

int file_count;

// how many files

PA
UL

 S
TO

DD
AR

D

SunExpert Magazine ■ January 1999 41

Work

char **file_names;

// the actual file names

ssize_t file_which, file_where;

// main bookmark

// next some constants

enum { BOOKMARKS=26 }; // the array sizing

enum { EMPTY_BM=-1L }; // empty bookmark defn

// supplementary bookmarks

ssize_t bm_which[BOOKMARKS];

ssize_t bm_where[BOOKMARKS];

Let’s add the prototypes for all our interfaces to the class
definition:

<bookmark interfaces>=

Bookmark(FILE *fp);

Bookmark();
~Bookmark();

void Add_File(char *name);

int Find_File(char *name);

void Write(char *name);

bool Query(char c,

ssize_t &which, ssize_t &where);

bool Set(char c, ssize_t which, ssize_t where);

void Set_main(ssize_t which, ssize_t where);

bool Set_main(char c);

In addition, we’ll add some inline routines to return data from
inside the class:

<bookmark interfaces>=

char *

Current_File()

{ return file_names[file_which]; }

ssize_t

Current_FileNr()

{ return file_which; }

ssize_t

Current_Line()

{ return file_where; }

int

File_Count()

{ return file_count; }

And we need a handful of interfaces to modify data inside the
class. (Exercise for the reader: Can you implement these as
C++ overloaded operators?)

<bookmark interfaces>=

void

Work

42 SunExpert Magazine ■ January 1999

Prev_File()

{

if(file_which > 0) --file_which;

file_where = 0L;

}

void

Next_File()

{

if(++file_which > file_count)

--file_which;

file_where = 0L;

}

bool

No_More_Files()

{

return(file_which == file_count);

}

We need to define a global variable to tell us if we are
reading a ZIP archive; for convenience, we’ll simply save
the file name of the archive if we are. (We define a macro
to make testing easier.) Also, if we are reading a ZIP , we
unfurl the current file into the current directory. This means
we need to access basename(file) if it is a ZIP we are
reading, otherwise, we access file . We define a macro to
test this for us:

<header files>=

#define we_are_zip ((zip_name != NULL))

#define locate(x) (we_are_zip? basename(x) : x)

Also, the Boolean type isn’t necessarily part of the language–it
has been in and out of the C++ specification so many times no
one’s quite sure–so we do some defensive programming:

<header files>=

#ifndef bool

#define bool short

#define false 0

#define true 1

#endif

We’ve discovered that in older versions of certain DOS com-
pilers, some useful constants may be missing:

<header files>=

#ifdef __MSDOS__

ifndef FILENAME_MAX

define FILENAME_MAX BUFSIZ

endif

ifndef R_OK

define R_OK 04

define W_OK 02

endif

#endif

Similarly, we’re going to need a file in which to save our list of
files and bookmarks. We’ll define its name and the name of the
printed clippings file now and save ourselves some grief later.
We’ll also define a single string containing both names. This will
save us some effort in function calls later on, as we shall see:

<header files>=

#define INDEX "___ndx__"

#define PRINT "___prt"

#define INDEX_PRINT "___ndx__ ___prt"

Also, we need to define global instances of the Bookmark

class and zip_name :

<global data>=

class Bookmark;

extern char *zip_name;

extern Bookmark *marks;

Calling the Pager
Now is as good a time as any to remind you that we’re

going to adopt a modified version of less for the pager,
which we’ll call lessrdr . We’ll use it through a local routine
called page() . Wrapping an interface routine like page()

around the pager provides us with a little insulation, making
it easier to insert a different paging program later.

Notice that despite all the setup we did in the class defi-
nition for supplementary bookmarks, we’ll ignore them here
because we don’t have room in this column to cover them. So
supplementary bookmarks are this month’s main exercise for
the reader. (Never fear. We’ll supply our solution to the exer-
cise in the form of a CWEBchange file and some more modi-
fications to less on our Web page.)

What do we need in our page() routine, and how do we
need to modify less for what we’re trying to achieve? We do
know that in addition to the normal complement of functions
a program like less provides, our pager will need some extras

Wrapping an

interface routine

like page() around

the pager provides

us with a little

insulation, making

it easier to insert

a different paging

program later.

to deal with bookmarks. We could handle the bookmarks en-
tirely in page() , but that would require calling directly into
our C++ methods and require the pager to have more knowl-
edge about the mechanics of bookmarks than we really want.
Instead, we’ll provide callback routines to service the reader’s
bookmark requests. (This will also provide further insulation
of the pager from the reader body.)

Let’s begin by assuming that we’ll call page() with a file
name and the normal complement of flags to less , such as
a begin line. The user will proceed to look at this file, moving
forward and back, interacting only with the code in the pager
until he needs interaction with the calling
routines for one of the following reasons:

• He wants to quit the program,
saving the current location in the main
bookmark.

• He wants to quit the program,
but wants to abandon all the new
bookmarks he set and does not
want to set the main bookmark.

• He finishes the file and
wants to move on to the next.

• He wants to return to the
previous file.

• He sets a supplementary bookmark
(which is part of the exercise for the reader).

• He wants to return to a previously saved bookmark
(which is also part of the exercise for the reader).
We’ll address each of these scenarios in the following sections.

We could define a struct for transmitting the file/line
pair, but it will be easier to pass them around by reference.
Notice that the pager is going to be sent a file name and line
number and return a line number; the pager won’t change files
without interaction from the main program. Generally, the
main program will keep its notion of the main bookmark in
the local instantiation of Bookmark as file_which and
file_where , modifying it when we interact with the pager.
In other words, when we’re in the pager, the main program’s
idea of bookmarks will be wrong and we’ll synchronize them
when we return to the main program.

Overall, the situation is as follows:

<process the files>=

int x;

do {

<special handling before ZIP text>

<ensure that we have the file>

<display current file returning retval>

<special handling after ZIP text>

x = retval & ~BOOKMARK_MASK;

switch(x) {

case RDR_NEXT: marks->Next_File(); break;

case RDR_PREV: marks->Prev_File(); break;

case RDR_QUIT: break;

case RDR_EXIT: break;

default: fatal("odd return from pager");

break;

}

} while((x != RDR_QUIT) &&

(x != RDR_EXIT) &&

!marks->No_More_Files());

In last month’s column, we handwaved over the above code
with a single call, to wit:

void

process_the_files(void)

{

<process the files>;

}

We also need a routine for the pager interface to tell the main
program where we left off:

<auxilary routines>=

void

SetMainBookmark(int loc)

{

ssize_t xx = loc;

marks->Set_main(marks->Current_FileNr(),xx);

}

Now, we’ll define the interface between the main program and
the pager:

<header files>=

static char *hdrid = "$Id: rdrr.h,v 1.2 1998/11/03 \

17:08:33 jeff Exp $";

#define RDR_NEXT (0x100)

#define RDR_PREV (0x200)

#define RDR_QUIT (0x400)

#define RDR_EXIT (0x800)

#define BOOKMARK_MASK (0xFF)

#define COOKIE "__cookie"

#define PRT "___prt"

A quick and easy thing to deal with next is the special handl-
ing for ZIP s. We need to extract the file from the ZIP before
reading:

<special handling before ZIP text>=

if(we_are_zip)

<unzip the named file>

We also need to delete the file if we extracted it from a ZIP ,
lest the directory get cluttered and confused–after all, we pur-
posely stored our reading material in a ZIP archive in part to
help with clutter.

<special handling after ZIP text>=

SunExpert Magazine ■ January 1999 43

Work

Work

if(we_are_zip)

unlink(basename(marks->Current_File()));

For insurance, we convince ourselves that we actually have the
file before we call the pager-interface routine.

<ensure that we have the file>=

if(access(locate(marks->Current_File()),

R_OK) != 0)

{

warning("file %s in index, not on disk\n",

marks->Current_File());

marks->Next_File();

continue;

}

Displaying the current file involves preparing a calling sequence
for the pager-interface routine, page() . We’ll assemble the
argv[] vector that we’ll pass to page() , which in turn will
execute lessrdr , our modified version of less . (For more on
the flags we’re passing to lessrdr , see the man page for less .)

<display current file returning retval>=

#define SMALLBUF 256

int pargc;

char *pargv[30];

int retval;

char b1[SMALLBUF];

char b2[SMALLBUF];

char b3[SMALLBUF];

struct stat sb;

pargc = 0;

pargv[pargc++] = "lessrdr";

pargv[pargc++] = "-q"; // operate quietly

pargv[pargc++] = "-r"; // leave ctrl chars

pargv[pargc++] = "-e"; // quit on 2nd EOF

pargv[pargc++] = "-i"; // ignore case in search

sprintf(b1,

"-P[%%f, %ld of %d] ?e(end):%%p\\%%. ",

marks->Current_FileNr()+1,

marks->File_Count());

pargv[pargc++] = b1;

// add the flag to get us to the right line

if(marks->Current_Line() > 1)

{

sprintf(b2,"+%ld", marks->Current_Line());

pargv[pargc++] = b2;

}

// add a flag to buffer the whole file

// in memory, if we can

if(stat(locate(marks->Current_File()),

&sb) == 0)

{

sprintf(b3, "-b%d",

(sb.st_size + 1023) / 1024);

pargv[pargc++] = b3;

}

pargv[pargc++] =

locate(marks->Current_File());

retval = page(pargc, pargv);

The Pager Interface
We begin simply enough with a prototype for the routine

we called above:

<prototypes>=

int page(int ac, char *av[]);

The pager interface must do a bunch of things with the argu-
ments we assembled above. To wrap it up into code,

int

page(int pargc, char *pargv[])

{

int len = 0, i;

<find length of arguments>

<assemble the command>

<do it!>

<read back the results>

<store and return results>

}

We need to count the length of the arguments so we know
how much space to allocate for the command line. We should
also leave some space for possible quote marks. (We’ll concede
that this may be a little anal retentive of us. We could probably
have just allocated a fixed, large buffer.)

<find length of arguments>=

for(i = 0; i < pargc; i++)

{

len += strlen(pargv[i]) + 3;

}

Our next step is to assemble the command into a single
string:

<assemble the command>=

char *cmd = (char *) malloc(len+1);

strcpy(cmd, pargv[0]);

for(i = 1; i < pargc; i++)

{

strcat(cmd, " ");

if(strchr(pargv[i],' ') != NULL)

strcat(cmd, "\"");

strcat(cmd, pargv[i]);

if(strchr(pargv[i],' ') != NULL)

strcat(cmd, "\"");

}

44 SunExpert Magazine ■ January 1999

The process of invoking lessrdr should be pretty obvious.
But we also remember to free the command buffer, lest we
cause a memory leak.

<do it!>=

system(cmd);

free(cmd);

When we return, we need to read back the cookie that the
external reader left us; we can delete it when we’re done.

<read back the results>=

FILE *fp;

int retval, location;

fp = fopen(COOKIE,"r");

if(fp == NULL)

fatal("can’t open cookie file!");

fscanf(fp, "%d %d", &retval, &location);

fclose(fp);

unlink(COOKIE);

Those results need to be stored as a bookmark using the call-
back routine we developed earlier:

<store and return results>=

if(retval == RDR_QUIT)

SetMainBookmark(location);

return(retval);

When we’re done and fall out of the big do loop above, either
by finishing the last file or quitting, we need to wrap things
up. We do this by writing the index file and saving it, if we’re
reading a ZIP . However, we don’t write the index at all if we
want to abandon all changes.

<process the files>=

if(x != RDR_EXIT) marks->Write(INDEX);

if(we_are_zip)

<zip the index and print files>

Service Routines
We need to spend a few sections talking about service

routines. We’ll begin with the service routines to extract and
return files to ZIP archives. We’ll start by writing the routine to
provide us, one at a time, with the list of files in a ZIP archive:

<auxilary routines>=

char *

next_file_from_listing(void)

{

static FILE *fp = NULL;

static char *listname;

static char *buf;

char *s;

if(fp == NULL) {

#ifdef DEBUG

warning("generating listing file\n", NULL);

#endif

<generate the listing file>

}

if(fgets(buf,BUFSIZ,fp) == NULL) {

<clean up the listing file>

#ifdef DEBUG

warning("next_file...() -> NULL\n",

NULL);

#endif

return NULL;

}

if((s=strchr(buf,'\r')) != NULL) *s = 0;

if((s=strchr(buf,'\n')) != NULL) *s = 0;

if((s=strrchr(buf,' ')) != NULL)

s++;

else

s = buf;

<special handling if s points at caret>

#ifdef DEBUG

warning("next_file...() -> %s\n", s);

#endif

return s;

}

SunExpert Magazine ■ January 1999 45

Work

Work

We need to fill in the blanks from the last routine. First, let’s
generate the listing file and open it. At the same time, we’ll
set up the transient storage.

<generate the listing file>=

listname = (char *) malloc(FILENAME_MAX);

buf = (char *) malloc(BUFSIZ);

<pick a zip listing file name>

<zip listing>

if((fp=fopen(listname,"r")) == NULL)

fatal("can’t open list file just built");

Next, we need to clean up after ourselves. To indicate
that we don’t have an active listing file, we set FILE *

to NULL:

<clean up the listing file>=

fclose(fp);

unlink(listname);

free(listname);

free(buf);

fp = NULL;

The name of the file for the ZIP listing depends on a num-
ber of factors. In particular, if we’re on a DOS system and we
are getting the archive off a floppy, we want to put the listing
file on the C: drive so as to not take up space on the floppy.
(Exercise for the reader: What should this code do on DOS
if you’re operating out of RAMDISK?)

<pick a zip listing file name>=

#define LISTFILE "@@@"

if(zip_on_floppy()) {

strcpy(listname, "C:");

strcat(listname,LISTFILE);

} else

strcpy(listname,LISTFILE);

We need to deal with the situation on UNIX where the file
name in the listing is preceded by a caret to indicate “case fold-
ing,” that is, in a ZIP archive created on DOS. We don’t need
to fold this into an #ifdef because the caret is an illegal file
name character in both DOS and UNIX.

<special handling if s points at caret>=

if(*s == '^') s++;

Errors need their own routines, as follows:

<auxilary routines>=

void fatal(char *msg)

{

fflush(stdout);

fprintf(stderr, "%s\n", msg);

fflush(stderr);

exit(1);

}

void warning(char *msg, char *s)

{

fflush(stdout);

fprintf(stderr, msg, s);

fflush(stderr);

}

46 SunExpert Magazine ■ January 1999

Work

48 SunExpert Magazine ■ January 1999

We’ve also got a bunch of holdovers for handling ZIP

files. We’ll handle them below, but first we need a service
routine to deal with them. The pksystem() service routine
should handle the placement of the working file so we don’t
overrun the floppy, but it doesn’t.

(Exercise for the reader: Fix the pksystem() routine
so that it can handle the possibility that we are reading off
a floppy disk.)

<auxilary routines>=

void

pksystem(char *cmd, char *flag,

char *flag2, char *file)

{

char buf[BUFSIZ];

sprintf(buf,"%s %s %s %s %s%s", cmd,

"-q",

flag, zip_name, flag2, file);

#ifdef DEBUG

printf("%s\n", buf); sleep(1);

#endif

system(buf);

}

We also need to define the ZIP utilities:

<header files>=

#define ZIP "zip"

#define UNZIP "unzip"

In a couple of quick passes, we’ll deal with calling that service
routine. Some explanation is in order: When unzipping, we
use the -o flag to force the overwriting of existing files (we
want to look at the file in the archive, not an old local copy),
and the -j flag to ignore the directory names on extract (we
want to extract the name locally, and not leave directories as
debris when we’re done).

Similarly, for zipping the index and clipping files back
into the archive, we use the -o flag to set the archive date to
the latest member (this keeps our archive dated identically
with the index file, that is, with our last read) and the -m
flag, which moves the file back into the archive, removing
it as debris from the local playing field. For the listing, the
qq appendage lists only the file lines, without headers and
trailers. The one-liner for the ZIP file listing is

<zip listing>=

pksystem(UNZIP,"-lqq",">",listname);

The code for extracting the index and print files is

<zip the index and print files>=

pksystem(ZIP,"-o -m","",INDEX_PRINT);

The code statment to extract a file is

<unzip the named file>=

pksystem(UNZIP,"-o -j","",

marks->Current_File());

And here’s one last utility routine, which we defined
last month:

<auxilary routines>=

void

unzip_index_print(void)

{ pksystem(UNZIP,"-o","",INDEX_PRINT); }

We need the routine to tell us if our ZIP is a floppy for
occasions like the floppy overrun test we didn’t add to
the pksystem() routine above. (Exercise for the reader:
We never assume that we’re reading froma
floppy, but what’s the correct strategy for
figuring out if we are? Remember that
our current disk on DOS might be A: .)

<auxilary routines>=

bool

zip_on_floppy(void)

{

return false;

}

We need an interface like the familiar
shell basename function:

<auxilary routines>=

char *

basename(char *path)

{

char *s;

s = strrchr(path,'/');

if(s == NULL) return path;

return ++s;

}

We also need prototypes for all these routines:

<prototypes>=

void fatal(char *msg);

void warning(char *msg, char *s);

bool zip_on_floppy(void);

void pksystem(char *cmd, char *flags,

char *flag2, char *file);

char *basename(char *path);

Finishing Up
We’re almost out of space, but we’ve left some information

out. For example, you now have the wrapper code for the pager,
but not the pager itself. The pager code is just a modified ver-
sion of less , and the context differences are provided on our

SunExpert Magazine ■ January 1999 49

Work

Web page. But, more important, now that you have code to
read text, where can you find some text? As we pointed out
last time, we wrote this originally to allow us to read back
issues of RISKS digests, which can be found at ftp://ftp.

sri.com:/risks , but there are other sources of text:
• Biblomania, The Network Library, http://www.

bibliomania.com

• U.S. Congressional Web site, which contains the text
of bills introduced, http://thomas.loc.gov

• Open Book Initiative, ftp://ftp.std.com/obi

• Project Gutenberg, http://www.gutenberg.net

Furthermore, there is a whole list of improvements that can
be made to our code. You may have noted some of them in the
margins already. Perhaps you, Gentle Reader, will add one of
the features below we haven’t had time to build. If you do, let
us know, and we’ll add it to the code on our Web site.

• We’ll repeat the one we’ve already mentioned: build the
code to implement supplementary bookmarks.

• The Project Gutenberg version of Alice’s Adventures in
Wonderland is accompanied by GIF images of John Tenniel’s
illustrations for the original printed version. How would you
display some text followed by a drawing, or even display them
simultaneously?

• Can the formatting be improved from flat text? Can the
open source version of a Web browser be used as the pager?
How would you do the conversion from flat text input files
to HTML on the fly?

• Can you think of a portable way to hide the index file
on both DOS and UNIX? On DOS, a file is hidden by setting
an attribute flag; on UNIX, it’s hidden by beginning its name
with a dot. We’re not sure it’s legal to have a DOS file with an
empty name and just an extension.

• We haven’t been very consistent in our strategy for load-
ing text into RAMDISK on DOS. What improvements could
be made?

• Can we implement an interactive index? In this mode,
we would display the list of files in our current index and click
on the one we want. This would allow us to skip from chapter
to chapter in a book, or go backwards and forwards to chase
references in RISKS.

• We need a command-line flag to print the version number.
• There are some flags in ZIP mode we haven’t used but

we might have. We used the -o flag so the archive retains the
date of the latest file, but we could also have used the -k flag
for Info-ZIP on UNIX to maintain compatibility with PKZIP

files on DOS.
• When we print output into the clipping file, we should

head each page with the file and line number.
• The wrapper program is fairly simple in concept. Could

it be rewritten as a Perl script?
• As currently constituted, we need to keep the list of

bookmarks in our head. Can you figure out a way to display
and annotate them?

• Sequentially running this program in a single directory
will overwrite an existing index file. Can you fix that?

As we mentioned in our November column, “A Short
History of Reading,” Page 58, commercial products are now
available to handle the function of this code in stand-alone
boxes. The most recent mentions of these products we’ve seen
were in two wire-service stories in the Rocky Mountain News.
In the first article (reprinted from The Wall Street Journal),
NuvoMedia Inc. (http://www.nuvomedia.com) , which
offers the Rocket eBook, announced distribution agreements
with publishers and says it expects to sell books electronically
for $18 to $25. This price is close to the cost of a hardcover
book, but the printing and distribution costs are essentially
nil. It suggests that their marketing folks have come up with
an absurd pricing model, or that the publishers–two of which
are already investors in NuvoMedia–are insisting on more
than 100% royalties on content. Part of the appeal of this
technology is that the publishing cost is lowered; not pricing
the content to reflect that difference will kill the idea.

In the other article, from Scripps Howard News Service
(http://www.shns.com), both Martin Eberhard of
NuvoMedia and Tom Pomeroy of SoftBook Press (http://

www.softbook.com), maker of the SoftBook System,
acknowledged that they are aiming their products at people
who need a lot of data to be portable. Eberhard is quoted
as saying, “This is designed for…the person who reads and
travels a lot.” We already carry a lot of hardware when we
travel. Our normal mode of operation is to clear an airport
with more weight in our briefcase than in our suitcase. Just
thinking about adding an extra two pounds for the special-
ized hardware makes our shoulders hurt.

We want to issue a challenge to both companies: Because
your profits are going to come from the content you’re pro-
viding, why not provide reader software for your content to
run on laptops? Most of those folks who read and travel a lot
are already lugging around much more computing power than
they need to run your applications. The real barriers to bring-
ing your software to a general-purpose computer are security
of the content and communications, but those problems are
already solved with specialized hardware. If it’s helpful, you
can begin your laptop work with the software we provide
here; we’ll offer very nice royalty rates.

That’s it from the Rocky Mountains for the beginning of
1999. Happy New Year and, until next time, happy trails. ✒

Jeffrey Copeland (copeland@alumni.caltech.edu) lives in
Boulder, CO, and works at Softway Systems Inc. on UNIX interna-
tionalization. He spends his spare time rearing children, raising
cats and being a thorn in the side of his local school board.

Jeffrey S. Haemer (jsh@usenix.org) works at QMS Inc. in
Boulder, CO, building laser printer firmware. Before he worked
for QMS, he operated his own consulting firm, and did a lot of
other things, like everyone else in the software industry.

Note: The software from this and past Work columns is
available at http://alumni.caltech.edu/ ~copeland/work .

	Reader, Part 2
	Calling the Pager
	The Pager Interface
	Service Routines
	Finishing Up

