
Literate Programming

An Introduction to

Literate Programming
by Jeffreys Copeland and Haemer

T
his month, we start a short

series on literate program

ming. This is a technique
that includes some interesting fea

tures, sonic odd mis-features and has

generated fanatic adherents and

detractors. We will pay sonic atten

tion to literate programming�s

advantages and disadvantages with

respect to portability issues.

Literate History
Literate programming is, in a sense,

an accident. Ii�s the side result of an

author who liked the way his hooks

looked, and a paradigm shift in tech

nology.
In the mid-1960s, a bright combina

torialisi who was interested in com

puters was finishing his Ph.D. and

post-doctoral work at Caltech. He sat

down to write several survey volumes

about the 12 most important topics in

computer science, bcginning with bits

and ending with compilers. Those 12

topics were supposed! to cover seven

volumes. The mathematician, of

course, was Donald Knuth, and the

series was titled The Art of Computer
Progmarimuiing. The first volume

appeared in 1967.

Well, computer

science marches

on, and quickly.
By the time Knuth

had finished the

third volume (on

sorting and search

ing) it was time to

revise the first vol

ume. Then it was

time to prepare a

revision on the

second volume.

Unfortunately,
before that could

be done, Addison-Wesley, which

had done all its mathematical type

setting in Ireland, moved from hot

lead Monotype equipment to cold-

type phototypcsetting. Knuth�s

books were mathematically inten

sive, and the equations set by the

new technology were not as pretty.

So, what�s a good computer scien

tist to do? Build a typesetting sys

Jeffrey Copcland (copeland@alumni. .
caltech

.
edu) is a incinbcr of mite technical saff at

QMS�s languages group, in Boulder, C His recent udventures includc inierriationctlizi ig a large salcs

atict iiiaiiiifacttiriiig system and provicli,ig software services to (lit administrators of (lic 199.3 citici l994

Hugo awards. His rescasch interests include iiitcr,icitioiicilization typcsemtiiig and cats cwcl children.

Jeffrey S. 1-loemer (jsh@canary.com) is an independent consultant based in Boulder, CO. I-ic

works, writes and speaks on the ii(crrclatccl topics of open systems, stiniclards, soft wait portability
and port iig, and internationalizwion. 0r Hcicincr has been a featured spea her at Usenix, UiiiFruin

cmcl Expo Kuwai.

26 RS/Magazine JANUARY 7995

Literate Programming

tern, obviously. Knuth�s solution was to take a year off

from writing The Art of Computer Programming and build

a system to set type and a complementary system to build

fonts because he wanted to duplicate the Monotype Mod

ern typeface used in his original books.

The first versions of those programs, which were called

TEX and Metafont, were written in SAIL, a language that

hadn�t found much favor outside the artificial intelligence
communities at Stanford University and the Massachusetts

Institute of Technology. (Let�s note here that TEX is a

trademark of the American Mathematical Society and

Metafont is a trademark of Addison-Wesley, just to keep
the lawyers happy.)
The first versions of TEX and Metafont were used to pro

duce the second edition of Seminumerical Algorithms, but.

their quality still wasn�t up to the old hot-lead Monotype

equipment. Because portability was an issue, versions of

both programs were eventually written in Pascal. But even

Pascal wasn�t sufficient; to be portable, the programs had

to have good internal documentation.

This was where literate programming came in. Knuth

and his colleagues invented a language called WEB,

which combined a text description, in TEX, with Pascal

code. The WEB program text could be compiled with one

tool to extract the program source code, and with anoth

er to make a printable document that described WEB�s

internal workings. The most famous example is the TEX
program itself, which is written in WEB. It�s described in

Knuth�s TEX; The Program (Addison-Wesley, 1986).

This enterprise was an example of Pournelle�s Law

(�Everything takes longer and costs more�). Ten years

after the one year �to write some typesetting software,�

the final versions of TEX and Metafont were completed,
and Knuth is finally working on Volume 4 of ACP.

Literate vs. Structured Programming
The Art of Computer Programming begins with the fol

lowing sentence: �The process of preparing Drograms for

a digital computer is especially attractive, not only
because it can be economically and scientifically reward

ing, but also because it can be an aesthetic experience
much like composing poetry or music.� Likewise, writing
a program in the literate programming discipline can be a

very good way to share that aesthetic experience.
More important, computer time is now cheap. Mainte

nance costs and human time to interact with programs

outweigh the cost of time to run them and frequently
outweigh the cost of the computer itself. Today�s goal

FacefTerm Ver. 3

I Increase your UNIX

productivity with the

FacetTerm

bright. csp images fl 256 windowing I_____The W)(-15C delivers sharP,
screen A 70 Hz ref resh rate

environment for

colors on a ighqUalitY 15-

guarantees
flicker-free viewing, and full-size 1024 X 768

character terminals,

pixel resolution clarifies even the finest deta
d & mouse

AlphaWindow
terminal s and PCs

sed architecture
between applicationsudesbaSePtocess0ol0ithcOfltr0FacetTerm

runs up to 10 UNIX applications

optmdf0SPe applications simuItaneous�. Cut and paste

as ow as

peruser

Doubl7/
__

VISION

UNiFi

Informix Software
Kick start your VAR program by olleng a

complete line of Informix-based software

products. As the premier UNIX Informix distributor, iiSC-Bas
JBS has more than 6 years experience in

distribution and support of Informix Solutions. Call

and ask about our discounts on development or

runhime software, and the Developer�s Assistance

Program.

Call JBS today to learn about becoming an

Authorized Informix Resellet

ri INFORMIX

Jones Business AceR -
Systems ranked
#1 as the fastest

growing business

in Houston* .

As complied byttie,Untversity otHouston

Small Business Devetooment Center.

.1

�FacetTerm .

fl
.

.

- FREE CatalogbI ri INFORMIX, 1-800.876-8649
staIlibA � or Fax In Your Order...

(713) 895.9333

CIrcle No. 17 on Inquiry Card

Literate Programming

should not be to describe the task to the computer, T�

but to describe it sufficiently to the next human who

will need to understand the program. .

This means that we now have to strip
In his paper �Literate Programming (The Computer

.

the search string from the command
Journal, May 1984, Vol. 27, pp. 97-111) Knuth admits

.

line. and put it in Isearchi.
to a more subtle reason for choosing the term: �Dur

ing the 1970s, I was coerced like everyone else into
tcisolate search strlng@>=

adopting the ideas of structured programming,
if(ac <= 1) @<usage message@>@I

because I couldn t bear to he found guilty of writing .

else if(strlen(*(++av)) < 1) @<usag message@>
unstructured programs. Now I have a chance to get

else {@
.

even. By coining the phrase �literate programming,� I
�

search = *av;
am imposing a moral commitment on everyone who

else (@
hears the term; surely nobody wants to admit writing

�

search = *av;
an illiterate program.

From Knuth�s statement, you may conclude that

structured programming and literate programming
ac

cannot coexist. Not true. By allowing for an orderly . .

-

exposition of a program, we can attack the problem in

any order that�s appropriate for correct structure without program and end up with TEX source containing both the

having to worry about that structtire all the time. program text and the explanatory text we�ve written to

Literate programming allows us to work on the problem make it a literate program. Processed through TFX, this

in both top-down and bottom-up, or sometimes even mid- File can be made a pretty document. An example of cweave

die-out, order, as needed. We�ve found that often our pro- output is shown in the next section. Note, however, that

grams are more logically thought out, and the control flow the cweave output, which would normally be typeset by
is better structtired. TEX, was converted by hand into input appropriate for

In Knuth�s original WEB system, in which TEX and most this magazine�s typesetting software. Unfortunately, this

of its friends are written, TEX is the formatting engine, and means that much of the program text�s nice typesetting is

Pascal is the programming language. However, there�s no lost. (If you�re interested, we�ll be happy to email you a

reason not to make other pairings. Knuth rcports on a lit- PostScript file of the TEX outptit from cweave and the C

erate programming environment, built by Harold Thimble- source File from ceangle. Send requests to one of our

by at the University of York, which uses troff. Using TEX email addresses.)

and C, C. Silvio Levy built a tool called C\VEB, to which

Knuth has made some additions and modifications. There An Example of CWEB

are tools combining other pairs of formatter and program- 1. An example of fgrep written in CWEB. Here, we

ming languages. These are in the pointers of the �Further provide a very simplistic version of the UNIX utility
Reading� section, at the end of this article. fgrep. We will take a command-line argument to find a

For the moment, we will use CWEB for our examples. character string and will search for that character string
There are several reasons for this. In general, C is more in the lines on standard input. If the string is found, the

portable than Pascal, so we like it better. All our previous line is written to standard output. Normally, we�d read

coltimns have assumed knowledge of C. Pascal is not a from an arbitrary list of files, but the point of this pro-

standard language on the RS/6000, and we don�t have a gram is to show you some of the techniques, not write a

compiler handy. Most important, our Pascal is rtisty. complete filter.

So how does CWEB work? A program is written in 2. A CWEB program consists of numbered sections and

CWEB, and includes both C text and TEX text (see List- named modules. The numbered sections contain (option
ing 1). al) descriptive text and code. The section5; with boldfaced

The CWEB source is processed by a program called names appear in the (optional) table of contents. The

ctangle to extract the C code. This is not the equiva- modules are pointers to code, which are expanded in the

lent of a simple sed operation. We can present the pro- sections.

gram in the CWEB source in a compleiely different A basic Filter consists of a pretty standard structure.

order than the one we wish to present to the compiler, CWEB allows us to outline it now, and in a process of

as we�ve discussed. step-wise reFinement, Fill it in later. We prcvicle each mod-

Once we�ve processed the C�vVEB source through ctan� ule with a name, which has text later. This section con

gle, we can compile the resulting code normally. Similar- tains an unnaniecl module. Unnamed modi.ilcs arc strung

ly, we can process the CWEB source throtigh the cweave together sequentially to form the main body of the code.

28 RS/Magazine JANUARY 1995

Literate Programming

<Header files 3>

<Global variables 5>

<Main program 4>

3. We begin with the obvious two header files. Note that

we are providing text to an earlier module name, and that

the modules are cross-referenced to section numbers.

<Header files 3>

#include <stdlib.h>

#jnclude <stdio.h>

(See also section 12.)

(This code is used in section 2.)

4. We also need to start laying out the main program in

order to sketch it in the control flow. Again, we are using
the step-wise refinement technique that Dijkstra first dis

cussed.

Note that once we�ve given a module its full name, we

need to use only the minimum recognizable prefix, fol

lowecl by an ellipsis, to name it again. This section begins
to define the module �<Main program>,� but the text in

our source below actually uses the name �<Main..>;�

cweave does the appropriate expansion to print the full

name, seen below.

Our modules don�t need to neatly define groups of state

ments. See the �while� statement below or an example.

<Main program 4>

main(ac, av)

mt ac;

char Akav;

<isolate search string 6>

while (<we have read a line 8>

<search for the string 10>

exit(0);

(This code is used in section 2.)

5. We have just skipped over vast amounts of detail.

What kind of data structures are we using? How are we

reading the next line?

Let�s start with some variables.

<Global variables 5>

char ksearch; I the search string itself f

char ufferBUFSIZ] /k the input buffer /

(This code is used in section 2.)

6. This means that we now have to strip the search

string from the command line, and put it in search.

<isolate search string 6>

if(ac � 1) <usage message 7>

else if(strlen(*+÷av)) <usage message 7>

else

search = *av;

ac--;

(This code is used in section 4.)

7. Notice that we�ve ignored the messy business of an

error message in the last section and can take it up at our

leisure. The encouraging news is that because the error

processing may well be more complicated than the main

line code, we won�t feel bad about writing an error rou

tine. Too often, if the error condition requires more code

than the correct branch of the if, we just predend the

error will never happen.

<usage message 7>

fprintf(stderr, �Usage: %s string\n�, *av;

exit(1);

(This code is used in section 6.)

8. The next module we need reads lines in the while

loop above. We pass this off to a function we will define

later. This function needs to return true if there�s a line,

and false if we�ve reached the last line of the input.
We could just use fgets() here, but we want to allow

for later expansion to an arbitrary list of files. As a result,

we use an intermediate routine instead.

<we have read a line 8>

get_next_line (buffer)

(This code is used in section 4.)

9. We provide another unnamed module, which con

tains the text of get_next_lineLL

get_next_line(buffer)
char *buffer;

if(fgets(buffer,BUFSIZ,stdin) NULL.)

return 0;

else

return 1;

10. How do we search for the string? Let�s populate this

module with a simple if.

<search for the string 10>

if(Iind_string(hu ffer,search))

printf(� s�,buffer);

(This code is used in section 4.)

RS/Magazine JANUARY 1995 29

Literate Programming

11. What string search algorithm to use? We could

choose any algorithm from Chapter 5 of The Art of Com

puter Programming. Instead, let�s do something really sim

ple-minded with the standard C string-handling routines.

find_string(b,s)
char *b, *5;

char *initial;

for(initial=b; initial; initial+÷)

initial = strchr(initial,*s);

if(initial NULL)

return 0;

if(strncmp(initial,s,strlen(s)) 0)

return 1;

return 0;

12. However, if we�re going to use the string routines,

we really need to declare them:

<Header files 3> +

#include <string.h>

13. At the end of the TEX file generated by cweave, we

get two useful indexes. The first index includes vari

ables and the section numbers in which they appeared
(underlined entries are sections where the variable is

declared). The second index is an alphabetical list of the

module names and the sections where they are defined

ac, 4, 6.

av, , 6, 7.

b, 11.

buffer, , 8, 9, 10.

BtJFSIZ, 5, 9.

exit, 4, 7.

false, 8.

fgets, 8, 9.

find_string, 10, 11.

fprintf, 7.

get_next_line, 8, 9.

initial, 11.

main, 4.

printf, 10.

5, 11.

search, , 6, 10.

stderr, 7.

stdin, 9.

strchr, 11.

strlen, 6, 11.

strncnlp, 11.

true, 8.

<Global variables 5> (Used in section 2.)

<Header files 3, 12> (Used in section Z.)

<Main program 4> (Used in section 2)

<isolate search string 6> (Used in section 4.)

<search for the string 10> (Used in se�:tion 4.)

<usage message 7> (Used in section 6.)

<we have read a line 8> (Used in section 4.)

An important thing to notice in our example above is

that we presented the program as it came to us, some

times top-down, sometimes inside-out, sometimes back

tracking to add a variable or an include file, but the

cta.ngle processor untangled it all and put the pieces
into the correct order for the compiler.
In CWEB, because C is a little strict about newlines, the

text to be compiled is pretty readable. However, in the

original Pascal-based WEB, the code output from tangle

became what�s known as the �Pascal brick�: The code is

filled to 70 columns, with no line breaks for convenient

reading. This is intentional. Humans are supposed to read

the WEB code or the printed output of weove, not the

extracted Pascal code. The compiler, particularly a Pascal

compiler, doesn�t care how the code is formatted.

We are reminded here of a colleague who was teaching
a course in Pascal to some students at a German indus

trial concern that will remain nameless. He asked the

students to write a pretty printing program to format

their code. Several of them returned the next day with

programs to fill-and-justify the source.

Further Reading, More to Come

The fountain of all knowledge is the Internet. Consult

the newsgroup comp.programming. literate for ongo

ing discussions about it. Of particular interest are two

tools called noweb and nuweb, which allow literate pro

gramming without imposing large overhead.

In addition to Knuth�s original paper in The Computer
Journal, two ofJon Bentley�s �Programming Pearls�

columns were devoted to literate programming, with exam

ples provided by Knuth (Communications of the ACM, Vol.

29, May 1986, pp. 264-369, andjune 1986, pp. 471-483).

The original WEB tools are described in detail, with

programs, in Stanford Computer Science Technical

Report 980 (September 1983). They are available on the

Net from the Comprehensive TEX Archive Network

(CTAN) sites: ftp.dante.de, ftp.tex.ac.uk,

pip. shsu. edu. The Levy-Knuth CWEB is available on

the Net in the same places.
Next month, we�ll begin by discussing portability issues

and then move on to a full example of a useful tool in

CWEB. Stay tuned. A

and used.

30 AS/Magazine JANUARY 1995

Literate Programming

A Real Example, Part 1

by Jeflreys Copeland and Haemer

J
f you were with us last time, it. Afteards, the other

you must have read our intro- of us . Haemer) will

duction to literate program- review the solution. ��

ming, a discipline originally devel- Like last month, the

oped by Donald Knuth. We program �as retypeset

described the technique and provid- from its original ver- �

ed a toy example using the cw ston. If you�d like to see I
tool. As promised, we�re back this the original, drop us an ��_:Z
month with a larger example. email note, and we�ll be

�

.

.

-

One of our references from last glad to send you a Post-

month was from Jon Bentley�s �Pro- Script lile to produce it.

gramming Pearls� column in Corn

rnunications of the ACM. in his June A Bit of History
1986 column, Bentley posed a prob- �Ted, are you more fluent in English
lem to Knuth, for which Knuth or French?�

wrote a solution in literate Pascal. �troff.�
Bentley then pointed out that �conversation between Chris Kostan

because Knuth was proposing a new ick and Ted Dolotta, circa 1984.

literary form, it should be reviewed

as such, and asked Doug Mcllroy to As we�ve discussed in our previous
do so. Suffice it to say that the liter- series, the history of troff is long

ary effort did not wow the critics, and interesting. This ubiquitous
Our intention in this and next UNIX utility began as a tool for dri

month�s columns is to replay that bit ving the /AT phototypesetter, a

of history. We�ve chosen a useful huge mechanical monster that Wang
problem, and one of us U. Copeland) Labs stopped manufacturing more

will write a literate program to solve than a decade ago.

Jeffrey Copeland (copelandca lumai
.

cal tech. edu) is a member of thc technical staff at

QMS�s Ia?Iguages group, in Boulder, C0 His recent adventures include internatronalizing a large saics

and manufacturing system and providing software services to the achninistrators of the 1993 and 1994

Hugo awards. His research ntezests include internationahiztion, typcsetti ng, cars and ch Idren.

Jeffrey S. Haemer (jsh@cenary.com) is an independent consultant based in Boulder, CO. He

works, and speaks on the interrelated topics of open systems, standards, software portability
rind porting, and internationalization. Dr. Haemcr has been a featured speaker at Userrix, UniForuni

and Expo Kuwait.

32 RS/Magazine FEBRUARY 1995

Literate Programming

Also, the tools built for and around troff have grown � Figures and display equations will need tc �float,� or

over the years. First were the preprocessors, like eqn and move from their original position in the galleys, but should

t.bl. Later, there were tools to �transmogrify� the hits des- not appear very far away from their original references.

tined for the C/A/I into bits that could be read by Versatec One of TEX�S notable features is that it makes a great

plotters or other devices. One of our favorites allowed you deal of effort to do good page makeup. Both Michael

to preview a very rough approximation of your final type- Plass� work developing TEX�S paragraph-buiLding algo
setter output on a Tektronix 4014 graphics terminal. The rithm and Frank M. Liang�s work on TEX�s hyphenation
transmogriflcation business developed into quite a cottage algorithm resulted in doctorates.

industry, until folks realized that the typesetting engine During the original era of C/Air-only output, in the late

should output a device-independent Form of typesetting 1970s, our polyglot friend Kostanick and colleague DoLotta

instructions rather than hits tied to a particular device, and developed a post-processor at AT&T Bell Labs that took

then post-process that intermediate form into device codes C/ALT output bits and did some page makeup. The

for a C/A/I, or Autologic typesetter or Imagen laser printer, processes vertically justified facing pages and rearranged

Beginning in 1981, Interactive Systems Corp. developed slugs as necessary to prevent widows and orphans. It need

INroff, from a clean base, ed to have some knowledge of

then spent a great deal of the page�s design, in order to

time and effort trying to nteractive Systems Corp. prevent destruction of headers

make it bug-for-bug compati- and footers. As a result, you

ble with troff. needed to tune and rebuild it for

Meanwhile, in the late developed INroff, from a each new page layout. It was not

1970s, Brian Kernighan had a general-purpose tool.

developed a typesetter-incle- clean base then spent a Later, Kernighan and Chris

pendent trot f, known as
�

Van Wyk developed the pi pro

ditroff, based on the origi- . gram, in order to justify
nal C/All sources. When great deal of urne and effort

ditroff output. U:cifortunately,
ditroff was released in 1982 pj was created on the erroneous

(accompanied by the much- trying to make it bug�for� assumption that troff finds

cited Bell Labs Technical good page breaks and just needs

Report 97) Kernighan�s . . a little help with justification.
sources became the reference bug compatible with troff. They followed this with a gener

version that nearly everyone al-purpose page makeup pro-

else adopted, gram cm, which they describe in �Page Makeup by Postpro
An internationalized version of ditroff is distributed on cessing Text Formatter Output,� (Computing Systems, 121

the RS/6000 as part of AIX. The Free Software Foundation Spring 1989], pp. 103-132).

provides james Clark�s groff, a version Free of AT&T We realized over the course of last summer that we need-

license restrictions, which is distributed with systems edjust this program. We were producing too many one-

shipped by BSDI. and two-page troff documents that needed jiggering and

One of troff�s failings is in page makeup. It is a wonder- adjusting and reformatting to get their pages to look nice.

liii galley system�that is, it is very good at setting characters As is often the way with life, it�s not until the snow started

into slugs (printer talk for lines of type) and getting those falling in the Front Range of the Rockies that we had time

lines justified. But it is very bad at ensuring that groups of to sit down and write our version of cm.

lines make pleasant paragraphs and that those paragraphs
are weU-composecl into pages. (Until recently, page make- The Problem: A Short Set of Rules

up was done from galleys, by trained pasteup people.) Our pages are made up of several kinds of slugs:
Here are some of the most important page-layout tricks: � A slug containing text (which Kernighan and Van

� Avoid widows (a header alone, or single lines from Wyk call a vbox, in homage to TEX);
the beginning of a paragraph, at the bottom of a page). � sp slugs, which contain space;

� Avoid orphans (the last line of a paragraph alone at � iie slugs of parameter h, which force a page break if

the beginning of a page). there is not h vertical space left on the page.
� In general, the pages in a document should be the Adjacent sp slugs are combined to contain the maximum

same length. of their heights; when an sp slug is output, its size may be

� In particular, facing pages should be macic the same increased to allow vertical justification. Text slugs are

overall length, by adding extra leading between paragraphs grouped, with tags between them, and come in two flavors:

if necessary. breakable and unbreakable. An unbreakable group�a page

RS/Magazine FEBRUARY 1995 33

Literate Programming

header block, for instance�cannot be split across a page
if (<this is not the last page>)

boundary. Breakable groups�for example, a paragraph� <justify curr page to height pageht>

have a parameter k, which tells us how many lines must <output the next pE group and currpage >

stay together if we break the group. Page title groups, pt,
are a special case: We gather them as they appear and out

put one per composed page. If we have some groups left Notice how we adopted the algorithm bodily from

over when the document is complete, they populate the bit Kernighan and Van Wyk�s article, and that cw allows us

bucket. If we have too few, we use the last one again, to presently ignore issues of data structure and keywords
Note that we have postulated a problem that is slightly like main. This also means that we have completely

smaller than the one Kernighan and Van Wyk solved. We ignored the difficult details of data structures for now.

don�t allow floating groups, and we ignore the problems Kernighan and Van Wyk use a series of queues to popu

of footnote blocks, so we are only dealing with streams of late the current trial page with slugs. Slugs are read into a

slugs and not with floats. Furthermore, we ignore the queue called input and tagged with a serial number. They
multicolumn problem and only work on making up are identified as to type and routed into either Bqueue,

pages of single columns. containing breakable streams, or Uqueue, containing
How do we process the groups? How do we get tags unbreakable streams of slugs. Slugs flow from Input to

into them? Read on. Bqueue or Uqucue and are processed onto the trial curr

page immediately; this means that only one of Bqueuc or

sn set the point size to n Uqueue is populated at a time. Also, when Bqueue is pop

fn set the font to n ulated, it only contains the minimum number of slugs to

cx print character x honor the parameter k, which tells us the: minimum num

Cxy z print special character named .xyz ber of slugs from the group that can appear on any page,

ttext print text with each character at its natural and which slugs are attached to each breakable group.

width (used only by groff) You may observe that since only one queue is occupied
Hn go to absolute horizontal position n at a time, this is exactly the same as read:ng one slug at a

Vn go to absolute vertical position n time from the main input stream. This is true. However,

hn move n units honzontally we set up the queue management now, because it will be

vn move n units vertically easier�here�s one of our famous exercises; for the reader�

nnc move nn right, print character c; to add handling for floating blocks of slugs later.

nn must be two digits Let�s expand the first step of algorithm one, given the

Dt
.. .

\n draw a graphic of type preceding discussion of queues.

nb a end of line: b space before, a space after We always want to add as many unbreakable groups as

w paddable word space we can to the page before we begin to add text from break

pn begin new page n; set V to 0 able streams. However, when we reach a econd page title

x..
.

\n device control group, we stop adding slugs to the page from Uqueue.

Similarly, since Bqueue is populated with the minimum

Device-independent troff produces strictly ASCII out- number of slugs we can add without causing a widow or

put. (Not true for the internationalized version on AIX�it orphan, we either add all its contents or recycle them for

produces output strictly in the codeset of the target print- the next try.

er.) There are a number of directives, as seen in the fol

lowing table. Output is parsable by a post-processor. <fill currpagc with enough eligible slugs
Note in particular the device control directive x.... We can <unblock all queues>

provide arbitaty device controls with the thtroff directive <while there is a queue neither empty rtor blocked>

\X� ...�. Each tag and group marker takes the form of a

device control and is generated by a \X�.
..

� in a macro. <while Uqueue is available >

The Page Makeup Algorithm: An Overview <try to add head of Uqucue to currpage>

At the highest level, we are adopting Kern ighan and

Van Wyk�s �algorithm 1� in its entirety. To wit: <try to add all of Bqueue to currpage

if (<Bqueuc (lid not fit>) I

<algorithm one > <empty Bqueue back to input>
<while slugs remain to be output > I <block input>

<fill currpage with enough eligible slugs>
<compose curr page into a page >

34 RS/Magazine FEBRUARY 1995

Lterace Programming

This begs an important question: how to �try to add Kernighan and Van Wyk discuss three shortcuts to

some or all of a queue to currpage, since we must check compute the height of the trial page. The goal is to avoid

the height of the trial page at each addition, performing a complete calculation of the trial page�s
height, which includes justifying the page, fDr each slug

<do a trial add > we add. Each of these shortcuts has some failings for

<add the trial item to the end of currpage > their larger problem, which involves floating items, but

if(<height of trial page is greater than pageht >) { any of them would work in our postulated tniverse,

<remove the trial item from currpage > which only includes running text.

<recycle trial item to the input queue > For simplicity, we adopt the same shortcut Kernighan
<block the input queue> and Van Wyk reported, which adds slugs while the sum of

<return failure status > the natural heights of slugs on the page is les than pageht,
and then adds slugs only if a trial justification ensures that

else the page doesn�t overflow. So, we can add another stcp:

<return success status >

<height of trial page is greater than pageht>
(sum_oJ_heights() > pageht) I (trial.,justiflcation() > pageht)

Notice that checking the height of the trial page is com

plicated. First, we need to preserve the �natural� height Here We Take a 30-Day Break

of paddable spaces. We will do this by having two heights That�s about all we have time for this month. We�ve suc

for each paddable space slug with each slug�s given and ceeded in outlining the problem of page justii:ication. 1-low-

expanded height; after each trial, we will reset the ever, we�ve neatly ignored nearly all the issue.; of imple
expanded height to the given height. Also, we cannot mentation and data structure. We�ll return next month

blindly increase all the paddable space on the page. Every with some remaining details of the algorithm and some

trial page would succeed after the first paddable space conclusions about it, and our on-the-spot exercise in liter-

was added, but they would have too much white space. ary criticism. A

Tomorrow and Beyond.... SALES � RENTALS
IBMfi RS/6OOO and idp CONVERSIONS � INTEGRATIONS

Complete System Integration
� Hardware RS/6000
� Software

� Connectivity RT/61 50
�RAID

Authorized
Call for unparalleled service Os,,,te

lrtterator
International SYSTEM/36

Data

Products AS/400 CALL:

Minnesota (800) 8882000
�Florida � California

800.846.7254 Dempsey
J4e/BAl7/#y/sSecvxdNa,�j,,e.B//S/NESS

SfrS/EMS

igj;eocn 8/v1. Suite 323

Hunting/on 8each. Ca/ifc/n/a c�2648

/
(714)8478486 .c.ix.� (714) 847.3

IBM is a registered trademark of International Business Machines Corporation
e egisternt taena,t 01 IntemanonaJ OisInss Mae�ineo Co,oet,on

Circle No. 16 on Inquiry Card
Circle No. 11 on Inquiry Card

RS/Magazine FEBRUARY 1995 35

Literate Programming

Literate Programming:
An Example, Part 2

by Jeflreys Copeland and Haemer

We Return from Our Break

11. We�ve had a month to mull

over the algorithm we began pre-
.

senting in February�s column. If (.)
you were with us then, you�ll
remember that we were working on

a trof filter to do page makeup as

a litcratc programming problem. S

We�ve based this on Kcrnighan and --

Van Wyk�s program which they
-

clcscrihc in �Page Makeup by Post- -

processing Text Formatter Output�

(Computing Systems, 121 (Spring
1989), pp. 103-132).

As before, this program has been Without further delay, let�s jump

re-typeset from its original form; to into the problem where we left off.

obtain the original, feel free to send

us email. Data Structures

To complicate matters, we goofed. 12. We have a number of data

We deleted the section numbers structures we�ve ignored so far.

when we submitted last month�s col- We�re about to need them, so we

umn. That�s why this month�s seg- should decide how they will be

ment starts with section 11. That�s arranged.
also why there are references to sec- 13. We begin by defining the data

tion numbers that don�t appear in strticture for the slug itself. We need

this month�s column. the type of slug (we define the possi

Jeffrey Copeland (copeland@alurnni .

caltech
.
edo) is a member of the technical staff cit

QMS�s himrgriages group, it l3otilder, CO. f-fin rcce,i acli�e,tturcs include i,ttCr,t at oitalizing a large salcs

and ,mrwttifacttiiing System and providing softwarc� services tc� the ctd,ni,ttst,ators of the 1993 and 1994

Hu,t,�ci twcircls. f4i, research i,ttcrcsts include internationalization typesetting, cats and child, c,t

Jeffrey S. Hciemner (sh@canary. corn) is an independent co�tsulia,rt based in Boulder, CO He

works, iviitc amid speaks omt tite it terrclated topics of open systems, staitclai cls, soft ware portability
and put tinq and ttcrnationalization. Dr. Hctenir has been ct featured pealtcr at Usi�nLv. UniFortmnt

and E�po Kuwait,

AS/T)t� Pivcu l�C Migaziiu MARCH 1995 31

Literate Programming

bilities as manifest constants), the slug�s height (both its

natural height and trial expanded height), its parameters
and the actual troff output composing it. We add a

block_count, which tells us how many of these slugs
immediately preceeded this one.

#deflne SLUG_BS 1

/ breakable stream /

#define SLUG_US 2

1* unbreakable stream *1

#clefjne SLUG_pT 3

#define SLUG_SP 4

#cleIine SLUG_ME 5

struct slug I

mt type;
mt natural_lit;

mt trial_lit;
mt k;

mt block count;

char *text;

14. We also need to define the queues of working slugs.
We�ll implement these as arrays up to some size, and oper

ate them as circular buffers. We�ll also need a flag to indi

cate if the queue is blocked. We define queues for break

abic and unbrcakablc streams and page title slugs, and the

main input queue. Let�s dcfiuie the actions of the queue

pointers now: ql!c�acl and qtail arc equal ii the queue is

empty, cltail points at the last slug entered into the queue

while qheacl points at the last slug read from the queue.

This means that both pointers are pre-mncrement.
One more (possibly subtle) point: Notice that we define

a lookahead queue. We will populate this queue with

slugs we need to preview for some reason. These slugs
can�t l)e read directly into Input because input is expected
to contain the minimum number of slugs to be processed
at each stage. If input did not perform this function, when

we recycled rejected slugs to ii, the order of text on the

page would become garbled.

#define QSIZE 1024

struct queue I

struct slug *Q QSIZE)

mt qlieacl, qtail;
mt blocked;

Bqueue, Uquenc, PTqueue, Input, Loolzalieacl;

15. Lastly we need to define a structure for the current

trial page. We could just define it as another queue, but it

is a bit cleaner to implement a separate data structure.

struct currpagc

I currpage;

struct slug *sp QSIZEI;
mt slugcount;

Utility Routines

16. Now that we�ve defined data structures, we need

some routines to manage them. We can write these as

freestanding functions.

Let�s declare all the routines that don�t return mt here,

to make our lives easier later on.

struct slug *gel_next_lookctheadO;
struct slug *getslugQ;
struct slug *readslugo;

17. We begin by writing routines to get a slug from the

queue Input and to push rejected slugs back. In get_slug,
we grab all available slugs from the Input queue; otherwise,

we need to get one from Lookalieacl. We transfer some data

from the previous slug if it is of the same type. This pre

vents us from needing global variables to keep track of

needs and record counts. We also need a gdneral-purpose

enqueue routine to put slugs on a queue. In unget_slug, on

the other hand, we back up the Input queue by one entry.

struct slug *

get_slugO

mt wtype, n, h;

if (cmpty(lnput)) I

next(Input.qtciil);
Qrail(Input) = get_next_lookciliecicl();

1* get last type /

wtvpe = Inpt.QInput.qhecicl]->type;
n = Qhecid(Input)->block_count;
li = Qliead(Input)->k; 1* poini to next slug I

next(input.qhead); 1* transfer data from previous slug /

Qhead(Iriput)->hlock_count =

(wtypenput.QInput.qlieacl1->type) ? ÷+n : 0;

Qhead(Input)->k =

(wtypenput.QInput.qhead]->type) ? k : 0;

return(Qhead(tnput));

enqueue(Q, s)

struct queue Q;
struct slug *5;

next(Q.qtail);
Qtail(Q) = 5;

unget_slug()

/ page title /

1* space slug *1

/ need slug /

32 RS/Thc PowciPC Ma,�cZIflL MARCH 1995

Literate Programming

queue at each end of the paragraph.
prev(Input.qheacO;

I

<special input processing for breakable stream slugs 20>

enqueue(Bqueue,s);
18. To do the preceding operations, it helps to have <prevent widows 21>

macros to do modulo arithmetic on the queue pointers. <prevent orphans 22>

This code is used in section 19.

#define next(x)

21. Preventing widows and orphans is remarkably sim

(x)++; pie, in principle. At each end of a breakable 1;trearn, we

(x)%=QsIzE; Just ensure that there are k slugs in Bqucuc.

#define prev(x) (((x) 0)? (x) = QSIZE :(x)--); <prevent widows 21>

#deflne empty(q) (q.qhecidq.qtail) if(s->block_count= 0) {

#define Qliecid(q) q.Qc1.qhead]) for(i = 1; i < s->k; i++)

#deflne Qtciit(q) q.Qq.qtciill) if((s = get_s!ugO)->type�sLUG_BS) I

unget_siug(s)
19. Next we introduce the routine to get a slug from break;

Input into the appropriate queue for the slug type.

enqueue(Bqueue, s);

process_next_slug.froni_Inpu t_queueO

mt i; This code is used in section 20.

struct slug *s;

22. Preventing orphans is marginally harder. We need

s = get_slugO; to look ahead into the input stream to see how many BS

switch(s->type) I slugs remain ahead.

case SLUG_US:

do <prevent orphans 22>
I I = BS_s!ugs_to_corncO;

enqueue(LJqtf cite, s); if(i > 0 && I < s->k)

while((s=gct_slugO)-> type SLUG_BS)

while((s=get_slugO)->type = SLUG_US); enqtteue(Bqtteuc,s);
itngct_slug(s); ungct_slug(s);
break;

case SLUGr: This code is used in section 20.

enqiteue(PTqueue, s);

break; 23. We also need a routine to populate the .Loohahcacl

case SLUG_ES: queue. Note that this routine is essentially a poor man�s

<special input processing for breakable stream slugs 20>; version of process_next_slng_frotn_Input_quetteO. The

break; heart of this routine is the one that actually reads slugs
from the troff input.

return 1;

struct slug *ge(nextIooIcI;1cac1o

20. Why do breakable streams need to be handled spe- if(empty(Lookalicad)) I

cially? Notice that we read all of the US-type slugs we can next(Loohahead.qheacl);
into the queue. This is because they need to be treated as Qtail(Lookahead) = reacLslugO;
a block. (Kernighan and Van Wyk treat blocks of US slugs I

as a single compound slug.) With ES slugs, it is not as next(Lookcthcad.qheacl);
easy: We must read the minimum number consistent return (Qheclcl(LooIlahcad));
with the parameter k, but no more.

As a result, we need to do some special handling for

Bqueue to make sure that there are at least k slugs in the 24. BS_slitgs_to_coweO is essentially a dirty trick on

AS/Tic PowciPC Mcioizinc MARCH 1995 33

Literate Programming

the data structures. We need to count up the BS slugs in

the Input and Lookahead queues, and to read ahead until

we run out of them.

BS_slugs_to_conie 0

mt count = 0;

mt i, type;

<check Input 25>

<check Lookahead 26>

<read more, if needed 27>

25. We look in the Input queue first:

<check Input 25>

for(i = Input .qhead; i < Input.qtail; i++

if((Input.QFiI)->type�sLUG_Bs) return count;

count++;

This code is used in section 24.

26. Similarly, we check Lookahecid.

<check Lookahecid 26>

for(i = Lookctheacl.c1head; i < Lookahead.qtail; i++) I

if(Lookahecid.QiI)->type � SLUG_BS) rewrn count;

count++;

<unblock all queues 29 >

Bqueue.blockecl = Uqueue.blocked = Input .olockccl 0;

This code is used in section 7.

30. We need to check ii queues are available. If a

queue is not empty and not blocked, we can continue to

add slugs to the page. lIthe ready queue is Input, we
must process its head before proceeding to the main

ioop. We check using a convenient macro, which we

define first.

#deflne recicly(q) ((-�cj.blocked) & (-rernpty(q)))
<while there is a queue that is neither empty

nor blocked 30>

while(reacly(Bqueue) H reacly(Uqueue) II

(reaciy(Input) && <get from Input 31>))

31. Next, we can process the Input queue.

<get from Input 311>

process.jiext_slug..jrorn_Inpu t_qiieuc 0
This code is used in section 30.

32. Now we get to a slightly more difficult part. We will

expand the processing for LJquetie.

<while Uquene is available>

while(recidy(Uqueuc))

This code is used in section 7.

This code is used in section 24.

27. Lastly, we read as many more slugs as we need to

get to the end of the current string of BS slugs.

<read more, if needed 27>

do

next(LookaheacLqtai!);
Qtail(Lookahead) = recid_slugO;
if((type= (Qtai l(Lookahecid)->type)) SLUG_ES)

count-1--4-;

while(type SLtJG_BS);

return count;

This code is used in section 24.

Composing the Page
28. We have already discussed the page makeup algo

rithm in overview. The heart of that algorithm was out

lined in last month�s column, and now that we have utili

ty routines to work with, it is time to expand it.

29. We begin with the procedure for unblocking all

queues. Since we have a flag associated with each queue,

this is quite simple.

33. For the trial add, we follow the outlitie of the code

in last month�s issue. (This code�which was the module

do a trial add�is intended as an outline of the code for

processing both Uqueue and Bqucue, which we neglected
to mention when we wrote it clown. We won�t expand
that code further.) Remember that the �head� of LJqueue
is conceptually a compound slug, so we add all the slugs
that make tip this unbreakable block. We save a pointer
to the place we started in Uqueue, so we can back out the

group of slugs if they don�t fit.

<try to add head of Uqueue to currpage 33>E

while(-�enipty(Uqueue))

next(Uqueuc.qhead);
cu rrpci,ge.sp icu rrpage. singcount++ I = Qhcacl(Uquetie);

if(<height of trial page is greater than page/it 9>) I

<recycle last ii slugs back to Input 34>

Uqueuc.bloclzeci+ +;

This code is used in section 7.

34 RS/The PowL�,PC Mcigziw MARCH 1995

Literate Programming

34. Recycling the compound slug to input is roughly the 36. We check if we�ve got too much for the trial page.
same loop as we use to put the text on currpage. We also

have to remove the slug from currpcige. <Bqueue did not fit 36>

<height of trial page is greater than pageht 9>

<recycle last n slugs back to input 34> This cocic is used in section 7.

currpcige.slugcount -= n;

Ior(= 0; < n; i++) 37. We may need to recycle those slugs back to input.
enqueue (input, For this we can use the same code we used for Uqueue.

currpage. sp

Lcurrpoge.slugcount + ii); <empty Bqueue back to input 37>

This code is used in sections 33 and 37. <recycle last n slugs back to Input 34>

This code is used in section 7.

35. We perform a similar set of operations for putting
the contents of Bqueue onto the page, again using the 38. We can also simply dispose of blocking the Input
code in section 8 as a model. queue.

<try to add all of Bqueue to currpcige 35> . <block input 38>

n = 0; Input .blockecl++;

while(-rempty(Bqueue)) I This code is used in section 7.

next (Bq u cue. q h cad);

urrpage.spcurrpage.slugcount++ I = Qhead(Bqueue); 39. Justifying and Outputting the Page
Now that we�ve got slugs on the page, we ncecl to have

some utility routines to determine whether the page is

This code is used in section 7. full, and to justify it if it is.

-, . . - -.:.d�--;-------
,

-. ...
..

.

.,..,___ __

__

__ __ __

SCO Operating peskToP MultiTech Systems
S stems �It�s JS1 t ms why not fly Multilech is more than high reliability modems for

onneCtiflg PC�s to UNIX s\Js e
your mission critical applications. With an approach

Business Critical II Windows and with..
�on tile transfer and toward wide area networking that includes

h erlormance terminal emula
MultiTech�s comprehensive line of modems,

SCO � 1-49
tn multiplexers, X.25, lease line and LAN intercommu

prin ?choice of connectivity RS2T4 nication equipment, JBS can configure every WAN
SPECIAL OFFER: Purchase 2 or more SCO i1sPx OECnet, NetBIOS, I

requirement you may have. Call today for products
Operating Systems on one invoice ___-/-- �� des FTP LpB & LPD utilities ranging from economical ZEX modems to the MMV
from the JBS catalog. Fax a copy of r0 Oi . Inc Uc11 stacK adds Windows �

series of Muxes for Voice/Dita/Fax on one
i your paid invoice and JBS will give

. Free
capability to existing stacks

/ communication link.
AMEX Gift

�
nfiqutable&secure desktop

CAJ,L MultiTech
Olier valid slough March31. 1995

S ,9 S
.u

Retai
for the latest pricing

Slop by the JBS booth ACeR (� I4Lzo �f/Facet Term S trns

i Board j_INFORMD(CaUForFREECatogijflhi urUm
1JSB stallion 1-800-876-8649
ptm.iuview � r�n� %ip.Jr.r Fax In Your Order...

to gel Your FREE Catalog /)((713) 895-9333
�

-..-�-- .,& r..

- � ,(p,f.., .iI,l \ �‰+LŁ

0= iterate Progrclrnnhing

We begin with the routine to check the �natural� height
of the page. We could skip this routine entirely and gain
some efficiency if we kept running track of the natural

height of the page.

sum_of_heights 0

mt i, sum = 0;

for(i = 0; i < currpage.slugcount; i++)

sum += (curipage.splifl->natural_ht;
return(sum);

40. The more complicated utility routine is that which

does a trial justification of the page. We need to do a

number of things with spaces as part of a trial justifica
tion. We first coalesce adjacent space slugs, zeroing space

above the first and below the last text on the page, and

leaving only the inaxiinum of adjacent space slugs. If the

page is still short, we can add more slugs.

trial...justification C)

mt sum = 0, secu_first_text = 0, last_text = 0;

mt max_space = 0;

mt i;

for (= 0; i < currpage.slugcount; i+÷) I

if (currpage.sp (ii ->type SLUG_SP)

max_space = en rrpagc.sp ii ->nat ural_ht;

if (seen_first_text 0) currpagc.spli]->trial_lit = 0;

else if(urrpagc.spi-1]->type SWG_SP) I

max_spacc max(niax_space,

urrpage.spi]->natural_ht);

urrpagc.spi-1]->trial_ht = 0;

else { / not a space slug /
if (max_space > 0 II seen_fl rst_texl > 0

urrpage.spi-1]->trial_ht = ma._space;

maxx_spclCC = 0;

if (seen.first_text 0)seen...flrst_text =

last_text =

1 / at end of page, ensure that trailing space is zero�d /

for(i = lcist_ext; i < currpage.slugcount; i÷+)

if(nrrpagc.spi]->type SLUG_SP)

urrpagc.spi]->trial_ht = 0;

/ now we must return the trial height *1

for(i = 0; i < currpage.slugcount; i++)

sum += urrpage.spiJ ->trial_ht;

return(sum);

since we�ve got the page put together and done a good
deal of work in our trial justification, this operation is

actually null. The only remaining thing we need to do to

the page before output is to justify it if we have a nonter

minal page.

<compose currpage into a page 41>

(1

This code is used in section 4.

42. To justify the page, all we really need is the proper

height. We judge this by calculating the excess space on

the page and allocating it proportionately to the existing

space slugs. We end the process by having each slug�s

printing height in trial_lit.

<justify currpage to height pageht 42>

justify_cu rrpage (pageht);
This code is used in section 4.

43. justify_cu rrpage (pagell t)

mt pctgelit;

mt total_space = 0, total_text = 0;

mt excess_space;

mt I;

for(i = 0; i < currpage.slugcount; i++)

if(currpage.sp(iJ->type SLUG_SP) total_space

currpagc.sp i / ->trial_ht;

else total_text += curmpage.sp lu ->natural_ ht;

excess_space = pagcht - (total_text + total_space);
for(i = 0; i < currpage.slugcount; i++)

if(urrpage.spi] ->type SLUG_SP)

currpagcsp i] ->trial_lit +=

currpage. splil->triaLht
*

excess_space / total_space;
else urrpage.spi]->trial_ht = currpagc.sp hi ->natural_ht;

The Main Program
44. The main program is fairly straightforward from

here. We get the page height and file names from the

command line, and invoke Algorithm 1.

main (ac,av)

mt ac;

char *avH;

mt i, n, pc1geht;

process_argsO;
<algorithm one 4>

exit(0);

41. Now we can actually compose the page. Actually,

36 RS/ The PmrerPC Miziie MARCH 1995

	Literate Programming.pdf
	Literate Programming
	1.Introduction to Literate Programming
	2.Real Example, Part 1
	3. Literate Programming- An Example, Part 2

