A Diophantine equation
(corrected slides)

Everett W. Howe

Center for Communications Research, La Jolla

ECC 2009 Rump Session
Calgary, 24 August 2009
In Vassil Dimitrov's talk this afternoon, the following statement was presented as a conjecture.

Theorem

For all non-negative integers a, b, c, d, e, f *we have*

$$\pm 2^a 3^b \pm 2^c 3^d \pm 2^e 3^f \neq 4985.$$
In Vassil Dimitrov’s talk this afternoon, the following statement was presented as a conjecture.

Theorem

For all non-negative integers a, b, c, d, e, f *we have*

$$
\pm 2^a 3^b \pm 2^c 3^d \pm 2^e 3^f \neq 4985.
$$

The theorem is equivalent to:

Theorem

For all non-negative integers a, b, c, d, e, f *we have*

$$
\pm 1 \pm 2^c 3^d \pm 2^e 3^f \neq 4985
$$

$$
\pm 2^a \pm 3^d \pm 2^e 3^f \neq 4985
$$
Proof.

Let \(n = \gcd(2^{180} - 1, 3^{180} - 1) \)
\[= 439564261361225 \]
\[= 5^2 \cdot 7 \cdot 11 \cdot 13 \cdot 19 \cdot 31 \cdot 37 \cdot 61 \cdot 73 \cdot 181 \]

Claim: For all integers \(a, b, c, d, e, f \) we have

\[\pm 1 \pm 2^c3^d \pm 2^e3^f \not\equiv 4985 \mod n \]
\[\pm 2^a \pm 3^d \pm 2^e3^f \not\equiv 4985 \mod n \]
Proof.

Let \(n = \gcd(2^{180} - 1, 3^{180} - 1) \)
\[= 439564261361225 \]
\[= 5^2 \cdot 7 \cdot 11 \cdot 13 \cdot 19 \cdot 31 \cdot 37 \cdot 61 \cdot 73 \cdot 181 \]

Claim: For all integers \(a, b, c, d, e, f \) we have

\[\pm 1 \pm 2^c 3^d \pm 2^e 3^f \not\equiv 4985 \mod n \]
\[\pm 2^a \pm 3^d \pm 2^e 3^f \not\equiv 4985 \mod n \]

This is a finite computation, and so is trivial.
No, really! It’s not hard.

Let

\[S = \{ \pm 2^a \cdot 3^b : a, b \in \mathbb{Z} \} \subset (\mathbb{Z}/n\mathbb{Z}) \]

\[T = \{ \pm 2^a \pm 3^b : a, b \in \mathbb{Z} \} \subset (\mathbb{Z}/n\mathbb{Z}) \]

Then \# \, S = 64800 and \# \, T = 129543.

For \, t \in \{1, -1\} compute the intersection \, S \cap \{s + t + 4985 : s \in S\},

and also compute the intersection \, S \cap \{t + 4985 : t \in T\}.

All three are empty.

This proves the claim.

Everett W. Howe
No, really! It’s not hard.

Let

\[S = \{ \pm 2^a \cdot 3^b : a, b \in \mathbb{Z} \} \subset (\mathbb{Z}/n\mathbb{Z}) \]
\[T = \{ \pm 2^a \pm 3^b : a, b \in \mathbb{Z} \} \subset (\mathbb{Z}/n\mathbb{Z}) \]

Then \(\#S = 64800 \) and \(\#T = 129543 \).
No, really! It’s not hard.

Let

\[S = \{ \pm 2^a \cdot 3^b : a, b \in \mathbb{Z} \} \subset (\mathbb{Z}/n\mathbb{Z}) \]
\[T = \{ \pm 2^a \pm 3^b : a, b \in \mathbb{Z} \} \subset (\mathbb{Z}/n\mathbb{Z}) \]

Then \#S = 64800 and \#T = 129543.

For \(t \) in \{1, -1\} compute the intersection

\[S \cap \{ s + t + 4985 : s \in S \}, \]

and also compute the intersection

\[S \cap \{ t + 4985 : t \in T \}. \]

All three are empty.
No, really! It’s not hard.

Let

\[S = \{ \pm 2^a \cdot 3^b : a, b \in \mathbb{Z} \} \subset (\mathbb{Z}/n\mathbb{Z}) \]
\[T = \{ \pm 2^a \pm 3^b : a, b \in \mathbb{Z} \} \subset (\mathbb{Z}/n\mathbb{Z}) \]

Then \#S = 64800 and \#T = 129543.

For \(t \) in \(\{1, -1\} \) compute the intersection

\[S \cap \{ s + t + 4985 : s \in S \}, \]

and also compute the intersection

\[S \cap \{ t + 4985 : t \in T \}. \]

All three are empty.

This proves the claim.