About Mark Adler

Still Out of Date

Gee, even the out-of-date section below is out of date. For some more recent information on me (if you can stomach it), take a look at my Wikipedia biography.

Out of Date

This web page is rather out of date, since as of January 1999 we have a second son, Zachary, and I have changed positions a few times at JPL. Currently, I am the Spirit Mission Manager for the Mars Exploration Rover (MER) project at JPL. News Flash: Spirit has successfully landed on Mars!

I will update all this Real Soon Now ...

In the meantime, here are some recent pictures of Joshua and Zachary.

Mark Adler lives in Pasadena, California with Diana St. James and their son Joshua Adler. Mark was born in Miami, Florida on April 3, 1959. His parents are David and Bertha Adler, and they currently live in Hollywood, Florida. Mark has no brothers or sisters. Joshua was born in Pasadena on November 7, 1991. Diana (like most women) prefers to leave her age a mystery ... Suffice it to say that she's younger than Mark and older than Joshua. Her birthday is July 16th. Diana works at Caltech and also directs and acts (professionally) in theatre. They have a somewhat large dog named Carl, a German Shepherd/Great Dane cross, born around Fall 1992.

Current Work

Mark currently works at Caltech's Jet Propulsion Laboratory (JPL) in Pasadena, a federally funded research and development center. The federal funds come almost entirely from NASA, so JPL is considered to be a NASA center. The JPL facilities are in fact owned by NASA, but the people work for Caltech.

JPL is primarily in the business of space exploration using robotic vehicles, and in terms of org charts, Mark works in the Mission and Systems Architecture Section (Section 311--JPL uses three-digit numbers heavily, for both section numbers and building numbers). This section provides the talent for advanced project development, such as the design of new space missions, and for top-level systems engineering, that is the design and coordination across the major systems of a project, such as the mission, science, spacecraft, and ground systems, as well as across the projects of an overall program.

Mark's current job title at JPL is the Mars Exploration Program Architect. The Mars Program is all of JPL's Mars exploration missions starting with the two being launched in 1996 (Mars Global Surveyor and Mars Pathfinder) and continuing out for another dozen or more years. As the "architect" Mark is responsible for laying out, with the help of a lot of other people, the sequence of missions to Mars to accomplish in concert the scientific exploration goals, and to make sure that the actual sequence of missions really do work in harmony toward those goals. The word architect is somewhat new in its application to space missions, but after looking it up in the dictionary, Mark thinks the term is appropriate. The first definition:

  1. one who designs buildings and advises in their construction
is the usual one and is not what Mark does. (Mark would probably get paid more if he did.) But the second definition:
  1. one who plans and achieves a difficult objective
is right on. At least the planning part, since the achieving part comes later. But the objective is certainly difficult, which is a comprehensive exploration of another planet on a relatively limited budget.

Why Mars?

The Planet
Mars So why Mars? Mark (and fortunately lots of other people) believe that Mars is the best place to go to answer the Big Question: Is life on Earth a bizarre cosmic accident, or is life a natural consequence of the way things work in the universe, as common as the stars in the sky? One way to answer the question positively is to find a nearby example of life that developed independently of life on Earth. That would cinch the case that life is almost inevitable, given the right conditions. The recent discoveries of planets around other stars assures us that planets themselves are not accidental or even rare, so that the right conditions must be out there. So if we found clear evidence that life developed independently on Mars, even if it's not there today, then we'd know there must be other places out there, lots of them, where life developed and flourished as it did on Earth. And so there might be life out there somewhere asking itself the same questions ...

Mars is a good bet to find this evidence because we know that, unlike today, Mars was warm and wet at the same time that life made its first appearance on the warm, wet Earth, about 3.8 to 3.5 billion years ago. Furthermore, this appearance of life on Earth came almost immediately (in a geological sense) after the heavy bombardment of space rocks ended which, while it continued, made the Earth's surface a rather inhospitable environment for what we imagine as fledgling life. In other words as soon as life had a chance on Earth, pow, there it was. So if Mars had similar conditions then, why not there as well? Why not indeed.

possible Martian nanofossil So how do we find this evidence? There are two approaches. First, we could look for evidence of life from the time of its first appearance, as we have found on Earth. This could be difficult, but if life survived only a short time thereafter until Mars became cold and frigid, then it may be our only choice. Fortunately Mars has made this easier to do there than it is here on Earth by preserving large areas of ancient Martian terrain. This terrain has been relatively undisturbed since those ancient times--no weathering has rearranged, mixed up, and buried material there as it does here on Earth.

The second approach is to assume that if life got started at all, then it has found a way, somehow, to adapt to the changing Martian environment and lives today. The trick there is that it may live today kilometers beneath the surface in underground water reservoirs where the heat from the planet keeps the water from freezing and the rock above keeps the water from being lost to space. So getting to that life would be rather tricky, but may be possible if we can find places where the water escapes to the surface in geysers, or at least gets close enough to the surface that we could realistically drill for it.

Since there's a lot of exposed ancient terrain with places where meteor impacts have done some digging for us, and since that's when life started on Earth in similar conditions, we will probably go look for the ancient fossil life first. Of course there is the recently uncovered possible evidence of life in a Martian meteorite from that ancient era, and so if that evidence stands the test of scientific scrutiny then it is another compelling reason to start our search by looking for fossil life. Later we will probably try looking for any existing life, if we can find promising sites and the ability to get to (or have delivered to us for free) subsurface liquid water.

In either case, we will be bringing carefully selected samples from Mars back to Earth so that we can apply our full arsenal of scientific equipment to the problem, and so that we can methodically rule out non-biological explanations for the observations without having to send an expensive mission to Mars everytime a new scientific objection is raised.

One interesting risk of betting on Mars is that while life may have developed there, it may not have been independent of the development of life on Earth. We already know that Earth and Mars have exchanged material in the past, and so it is possible that life developed on one planet and then seeded the other. In fact Mars may have become hospitable before Earth, so perhaps life first evolved on Mars, seeded Earth, and we are the Martians! Now wouldn't that be interesting ...

Lots of questions. Not a lot of answers. Let's get to it.

(Sorry, Mark thinks that that sort of stuff is a lot more interesting than Mark--now back to Mark.)

What Mark Actually Does

Sample Return launching from Mars So what does Mark actually do? Lots of different things. He talks with the scientists to understand in detail what the scientific goals of Mars exploration should be, which of course change over time as we learn more about Mars. The recent observations about the Mars meteorite ALH 84001 are a good example of a change in our understanding. He talks with the spacecraft engineers to understand what's possible and talks with the technologists to learn what may be possible in the future, and when. He talks with managers to understand what these things will cost, and what resources are available, or what resources may become available in the future. And teaming with all these people, they lay out possible plans for consideration by the scientists and by NASA Headquarters in order to decide what our next step will be. In general they will plan out many years of exploration in order to decide the next step. And then they'll do that all again for the following step, since it's likely that a lot of things have changed since the last step, including their understanding of Mars, the available resources, the technologies, international aspects, etc.

Lately Mark has been heavily involved in a NASA-wide effort to plan human missions to Mars, in particular how the robotic missions will pave the way for human exploration. The robotic missions will return information about Mars critical to the engineering of the human missions, will demonstrate new technologies intended to make the human missions affordable, and will provide the scientific information to select the most fruitful sites on Mars for human landfall.

Another responsibility Mark has is to coordinate existing missions in the program and where they affect each other. An example is assuring that the proper capability is put into early Mars orbiters that may be needed to support later Mars landers to get their data back to Earth. He also helps the technologists understand what our future needs might be so that they can get started early on trying to develop those capabilities. Mark works with other missions and programs when there is some overlap in issues with the Mars program, such as combined technology development, or deep space communications resources used by many JPL missions.

Mark has a derivative and exciting responsibility as the designer of the first Mars sample return mission, which you see here, where NASA will bring Mars rocks, dirt, and air back to Earth to study. Bringing that stuff back from Mars is not as easy as it sounds (and so again the second definition of architect applies). In this job Mark trades various approaches to the problem and directs teams in evaluating the approaches and in attacking the "tall tent poles" or major difficulties in particular approaches to getting the stuff back.

Previous Tasks at JPL

From 1992 to 1995, Mark was the Lead Mission Engineer on Cassini.

The Cassini Spacecraft
Arriving at Saturn The Huygens Probe
Descending at Titan

Cassini is a large, heavily instrumented, nuclear-powered spacecraft that will enter into orbit around the ringed planet Saturn to begin a four-year tour, and to deliver the Huygens Probe (supplied by the European Space Agency) to Titan, the largest moon of Saturn and the only moon in the solar system to have a substantial atmosphere. Cassini will launch on a Titan IV/Centaur vehicle in October of 1997 and use gravity assists from Venus (twice), Earth, and Jupiter in order to arrive at Saturn almost seven years later in July of 2004. It will then use many gravity assists from Titan over four years to tour the system and explore Saturn's atmosphere, rings, and magnetosphere, its icy satellites, and Titan itself.

The spacecraft has several imaging and spectrographic instruments from the infrared to the ultraviolet, as well as a RADAR to help pierce the hazy veil of Titan's atmosphere. It also has several field, particle, and wave instruments to detect magnetic fields, radio waves, charged and neutral atoms and molecules, and solid particles. Finally, radio transmitters on the spacecraft in several bands in concert with receivers on Earth will be used to examine the rings, atmospheres, and gravity fields in the system, as well as to attempt to detect gravitational waves during the cruise to Saturn. The Huygens Probe carries instruments to thoroughly investigate Titan's atmosphere during a two and a half hour descent. It will also return images of the surface of Titan during the latter part of the descent, and upon landing a surface science package will determine the surface characteristics directly, whether it lands on ground or in an ethane ocean or lake.

(Mark went and did it again--now back to Mark.)

As the Cassini Lead Mission Engineer, Mark was responsible for the Cassini Mission Plan, which describes the entire mission from launch to the end of the four year tour, including the spacecraft activities, spacecraft operation strategy, and tour characteristics. The definition of the mission requires a creative marriage of the desired science investigations with the spacecraft capabilities and ground system limitations (the latter being funding derived), all of which are always changing in response to each other and external influences. Mark had a team of mission engineers working for him on these tasks.

At JPL, Mark also did a preliminary mission design for a Lunar interferometer, autonomously landed and remotely operated, for the detection of planets around nearby stars. Mark hopes that someday there will be a funding commitment to support the search for and characterization of planets around other stars. This is the other essential part of the overall search for life elsewhere in the universe.

Previous Work and Education

Before coming to JPL in early 1992, Mark worked for Hughes Aircraft Company in El Segundo, California (right next to the Los Angeles Airport) in the Space and Communications Group. He had a rather eclectic variety of tasks there, including analysis of the effects of X-ray bursts on satellite cables, development of new error-correcting codes, designing an automobile anti-theft key, and digital image and video compression research (wavelets and MPEG-2).

Feynman Lecturing With
His Hands

Mark was on a Howard Hughes Fellowship (from Hughes Aircraft) for his doctoral work at Caltech, where he received his Ph.D. in Physics in 1990. His thesis in theoretical particle physics was titled "The Persistence of Charm in the Relentless Decay of Beauty." The subject was the calculation of the semileptonic decays of beauty-charm mesons.

University of Florida

Mark received his B.A. in Mathematics in 1981 and his M.S. in Electrical Engineering in 1985, both from the University of Florida in Gainesville, Florida. Between the B.A. and M.S., he worked in Gainesville in various capacities for the University, usually having to do with computer systems analysis and systems programming.

Personal Life

Mark's hobbies include bicycling (touring, and he tries to commute by bicycle to work), flying small planes, Shotokan Karate (well, used to anyway), computer programming, electronics tinkering, model rocketry, singing, and local amateur theatre (emphasis on amateur). The latter has included the roles of Mark Antony in Julius Caesar, the Constable of France in Henry V, Charles F. Maude in Bye Bye Birdie, Cardinal Woolsey in A Man For All Seasons, Scrooge in A Christmas Carol, Dogg/Shakespeare in Dogg's Hamlet, Cahoot's Macbeth (actually two plays separated, and therefore joined by a comma), Edward Farpis (an out of work film idol) in Revenge of the Space Pandas, and King Arthur in Camelot, most at TACIT. For King Arthur, he was voted 2nd Place for Best Local Actor by the Pasadena Weekly (1st place went to film actor Kevin Costner, who actually lived in neighboring La Cañada at the time, grumble, grumble). On the left you can see Mark during stage combat training for Henry V.

Mark is also SCUBA certified, but hasn't dived much in California, much preferring the clearer, more scenic, and warmer waters off of Florida. Mark likes cooking vegetarian meals.

On the network, Mark has contributed free software as a coauthor of Info-ZIP's zip and unzip, GNU's gzip, the zlib compression library, and as a participant in the PNG image format development effort. These activities sprung partly out of his compression work at Hughes and partly out of a desire to have Unix zip utilities for use on his NeXT on which he had all his old PC files in zip format. One thing led to another, and well ... He continues to support his compression-related code as meager payback for all the free software from the net that he has benefited from.

You can send mail to Mark Adler at:

The above address is an alumni account at Caltech, and will outlive any possible job changes. You can email me for my voice and fax phone numbers, and my snail-mail address.

key PGP Key

This page was last updated March 2nd, 1998. Minor updates were made near the top on January 4th, 2004. Even more minor updates were made on August 9th, 2008.

Russian Translation of this page.
click here to read a Belorussian translation of this page.
Or in Ukranian if you like.